Prosjektrapport 22

Jarle R. Herje

Varmetekniske målinger

Beskrivelse av utstyr og metoder ved NBI Trondheimsavdelingen

Norges byggforskningsinstitutt 1987
Prosjektrapport 22

Varmetekniske målunger
Beskrivelse av utstyr og metoder
ved NBI Trondheimsavdelingen

av Jarle R. Herje

UDK 536.5
ISBN 82-536-0253-7

Opplag: 200 eksemplarer
Strindheim Trykkeri A/L, Trondheim
Norges byggforskningsinstitutt 1987

Adresse:
Forskningsveien 3B, Postboks 123 Blindern, 0314 OSLO 3
NBI Trondheimsavdelingen, Høgskoleringen 7, 7034 TRONDHEIM NTH
<table>
<thead>
<tr>
<th>INNHOLD</th>
<th></th>
<th>side</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Innledning</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>Varmesolasjonsmaterialer, typer</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>Historikk, NBI</td>
<td>5</td>
</tr>
<tr>
<td>4.</td>
<td>Måleutstyr for materialer</td>
<td>6</td>
</tr>
<tr>
<td>5.</td>
<td>Måleutstyr for konstruksjoner</td>
<td>8</td>
</tr>
<tr>
<td>6.</td>
<td>Feltmålinger</td>
<td>11</td>
</tr>
<tr>
<td>7.</td>
<td>Internasjonal tilknytning</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>English summary</td>
<td>13</td>
</tr>
</tbody>
</table>
Forord

Norges byggforskningsinstitutt har i en årrække arbeidet med forskning og rådgivning vedrørende bygningers varmetekniske egenskaper. Det har hatt sammenheng med energisparing, inneklima, etc.

Ved NBI Trondheimsavdelingen anskaffet og utviklet man tidlig apparatur både for eget bruk, salg til bedrifter for deres egenkontroll og til andre laboratorier.

Med energikrisen og utviklingen av nye prinsipper for måleteknikk, nye isolasjonsmaterialer, nye konstruksjonsmetoder etc., ble det behov for en omfattende revurdering av våre opplegg. Det var nødvendig å utnytte de nye mulighetene som forelå. Dessuten måtte nye behov dekkes fordi nye, ukjente materialer, materialkombinasjoner og materialanvendelser var på vei inn.

Vår målsetting var at vi fortsatt skulle kunne tilby brukere, kontrollorganer og produsenter all nødvendig hjelp og rådgivning ved utvikling og bruk av varmeisolasjonsmaterialer til alle formål i byggefaget.

Denne rapporten beskriver kort de viktigste utstyrserhetene og laboratorietjenestene vi nå kan stille til rådighet for løsning av behov og problemer i byggefaget. Vi mener at den kan være nyttig for virksomheter som har behov for å få utført målinger både i forbindelse med produktutvikling og kontroll m.m. I tillegg til dette kommer vår kapasitet mht. utredninger, beregninger og teoretiske studier, som ikke er omtalt her.

Samlet betyr dette at instituttet har forutsetninger for å kunne løse de oppgaver som måtte forekomme innenfor feltet varmeisolering av bygninger.

1. INNLEDNING

Generelt

Måling av varmeisolasjon er nødvendig i mange sammenhenger. Man ønsker f.eks. å holde en passende temperatur i et lokale av miljømessige, helsemessige og trivselsmessige grunner med minst mulig forbruk av energi. Det kan gjelde såvel meget lave temperaturer (f.eks. i fryseri) som midlere (i bolig) eller høye (i trelasttørke).

I alle tilfeller finnes valgmuligheter når det gjelder metode og nøytighet.

Myndighetene i de fleste land har i de siste 15 årene vært opptatt av behovet for å spare energi, blant annet ved å støtte arbeidet med å gi bygninger bedre varmeisolasjon.

Andre eksempler på utviklingen innenfor varmeisolasjonsteknikken er:

- Varmeisolering av rør i bakken for å redusere gravedybden med tanke på frostsikring.
- Varmeisolasjon i veier og jernbanelegemer for å hindre telehiv.
- Varmeisolasjon under og rundt grunnmuren for å redusere fundamenteringedybden.
- Isolasjon av røykpipre

For sammensatte konstruksjoner blir den samlede varmeisolasjonsevnen og overflatetemperaturen vanligvis beregnet etter anerkjente teorier ved å benytte de kjente verdiene for enkeltmaterialene. Disse beregningene kan være mer eller mindre riktige/gode, avhengig av hvor kompliserte konstruksjonene er og behovet for nøyaktighet.

Det fins imidlertid også målemetoder og utstyr for måling av varmeisolasjonssegenskaper (U-verdi) for sammensatte konstruksjoner både for bruk i felt og laboratorium. Det samme utstyret kan også benyttes for å fastlegge overflate temperaturer når det er nødvendig, f.eks. med tanke på kondensføre.

2. Varmeisolasjonsmateriale, typer

De forskjellige varmeisolasjonsmaterialene som benyttes i dag, kan deles opp i flere grupper:

A. Uorganiske fibermateriale i matter eller plater
 Uorganiske fibermateriale i løs form, granulater (bl.a. glassull, steinull, asbest)

B. Keramiske materiale i løs form (kornform)
 Keramiske materiale støpt i blokk eller plater
 (bl.a. brent, ekspandert leire, brent ekspandert vulkansk stein, skumglass)

C. Betongmaterialer med gassfylte porer
 Betongmaterialer med hull/slisser
 (bl.a. gassbetong på sement- eller kalkbasis)

D. Organiske materiale som løsfyll
 Organiske materiale i plater, matter, blokk
 (bl.a. kutterflis, sagflis, halv, kork, cellulosefiber)

E. Plastmaterialer med gassfylte porer
 Plastmaterialer med hull/slisser/luftlommer
 (bl.a. ekspandert eller ekstrudert polystyren og polyurethane, ekstruderte plastplater med kanaler)

F. Blandingsprodukter
 (bl.a. ekspandert leire støpt som hullblokk, med hullene fylt med skumplast)

I mange tilfeller er det derfor nødvendig å angi både alder, fuktighet osv. når materialet prøves. Videre må man også legge stor vekt på bruksområdet når en materialtype skal velges.

3. HISTORIKK, NBI

Gjennom disse 30 årene har måleteknikken utviklet seg videre. Ved NBIs laboratorium er eldre apparatur kassert og erstattet med nyere og mer effektive utgaver. Dette har først til raskere målinger og har også lagt grunnlaget for forbedringer av det utstyret som selges.

Måletsidenen for tiden som kommer er fortsatt forbedring/efektivisering av det utstyret og de metodene vi selv bruker. Vi forutsetter også en økning i vårt salg av utstyr til andre, både til produksjonsbedrifter og kontroll- og forskningsorganer av forskjellig slag.

Som et ledd i kvalitetssikringeren startet de norske varmeisolasjonsprodusentene en frivillig kvalitetskontrollordning i 1966 (VIF). NBI ble engasjert i dette arbeidet helt fra starten og utfører de fleste målinger av varmekonduktivitet. Medlemstallet i VIF har økt betydelig siden starten, og det samme har skjedd med antall materialtyper.

Laboratort er spredt ut i hvert land i tillegg til utstyr for laboratorieundersøkelser av materialer, finnes også utstyr for laboratorieundersøkelser av konstruksjoner. Undersøkelser i friluft under naturlige påkjenninger gjøres både i forbasområdet Tyholt i Trondheim og som feltmålinger i ferdige bygg.
4. MÅLEUTSTYR FOR MATERIALER

"Guarded hot plate"

Prinsippet er vist i fig. 1. Det består av to kjøleplater K₁ og K₂ samt en varmeplaten V₁. Varmeplaten er delt i en indre måleflate V₁ og en ytre "guard" ring V₁, som oppvarmes elektrisk uavhengig av hverandre, men slik at temperaturen på dem holds lik Tᵥ.

Gjennom kjøleplatene strømmer en kjølevæske slik at temperaturen på dem holdes konstant Tᴷ. Temperaturen på K₁ og K₂, V₁ og Vᵧ kontrolleres med termoelementer som avleses med en nøyaktighet av ca. ± 0,1 °C. Det måles på to prøver av det materiale som skal undersøkes. De plasseres mellom varme- og kjøleplaten - på skissen betegnet som P₁ og P₂.

Varmetilførselen til V₁ og Vᵧ reguleres helt til man får stabile forhold, det vil si at de ønskede temperaturene Tᴷ - Tᵥ holder seg konstante ved en konstant effekttilførsel W til måleflaten V₁.

Ved målinger på isolasjonsmaterialer som skal benyttes i vanlige hus, brukes vanligvis Tᵥ/Tᴷ = 15/5 eller 20/0 °C. Det gir en middeltemperatur på 10 °C på prøvestykken.

Prøvestørrelsen er vanligvis 600 mm x 600 mm. Største tykkelse som kan måles er 120 mm.

For å kunne måles, bør materialet ha en varmemotstand på min. 0,1 m² °C/W. Det vil si at materialer med høy λ-verdi må være tykkere enn de med lav λ-verdi for å kunne måles. Usikkerheten i den måle λ-verdien er 1-3 % avhengig av materialtype, overflatebeskaffenhet m.m.

Apparatet passer ikke til måling av fuktige materialer. Det brukes også til kalibrering av varmestøpmålere.

Plateapparat med varmestøpsmålere

Prinsippet er vist i fig. 2. Det består av to plater K₁ og K₂, som hver for seg har en varmestøpssømlar på den ene siden (V₁ og Vᵧ). Prøvestykket P plasseres mellom varmestøpmålerene. Gjennom de to platene K₁ og K₂ kjøres væskestrommen med temperatur henholdsvis T₁ og T₂. De styres av termostater med stor nøyaktighet.

Temperaturforskjellen mellom de to platene K₁ og K₂ gir en varmestøy som går fra platen med den høyeste til den med lavest temperaturen. Det fører videre til at det blir et temperaturfall over hver av varmestøpmålere, noe som igjen gir en elektromotorisk kraft fra termoseriene i varmestøpmålrene.

På grunnlag av den av temperaturfallet gjennom prøvematerialet kan varmemotstanden prøvematerialet P måles.

Prøvestykket har oftest en størrelse på 600 mm x 600 mm som tilvirker størrelsen på varmestøpsmåleren.

Materialetoppskyting prøvematerialet kan være opptil 120 mm. Det må ha en varmemotstand på minst 0,1 m² °C/W. Usikkerheten i målingene er omtrent som ved "guarded hot plate" apparatet.
Dette apparatet produseres også for salg og kan leveres med varmeværemålere av forskjellig følsomhet. Normalt er måleflaten 300 mm x 300 mm, men den kan lages både større og mindre etter ønske (f.eks. 300 mm x 500 mm, eller 150 mm x 150 mm).

To av apparatene er beregnet på måling av varmeværm i vertikal retning - enten oppad- eller nedadrettet.

I det tredje apparatet, se fig. 3, kan man måle med varmeværm også i horisontal-retning, eller i hvilken som helst skråstilling mellom 0 og 90°.

Se også Norsk Standard NS 3161 (Bestemmelse av varmemotstand ved hjelp av varmeværm apparat).

Høytemperaturapparat

Prinsippet er vist i fig. 4. Det består av tre varmeplater av temperaturlenestandig materiale V₁, V₂, V₃ og to kjøleplater K₁ og K₂.

Prøvestykkenne P₁ og P₂ plasseres mellom platene.

Hver av de fem platene har separat temperaturkontroll. Den sentrale varmeplaten V₂ har dessuten en nøyaktig effektmåler.

Varmemotstanden for prøvene kan måles for forskjellige temperaturnivåer ved å variere temperaturen på de tre varmeplaten. Den sentrale platen V₂ holdes på høyeste temperatur, mens de to andre holdes like på den lavere temperaturen.

Når temperaturen har innstilt seg stabilt på de nivåene man ønsker, måles effekttilløpselen til V₂, og prøvenes varmemotstand ved det aktuelle temperaturnivået kan beregnes, ut fra den tilførte effekten og temperaturfallet gjennom prøvestykkenne.

Prøvestykkets størrelse er maksimalt 450 mm Ø. Maksimal tykkelse er 80-100 mm. Høyeste temperatur på den sentrale platen V₂ er ca. 1000 °C.

Granulatmålinger

Granulerte varmeisolasjonsmaterialer blåses inn i konstruksjonene ved hjelp av en spesiell dyse, enten som fri utlegging på horisontale flater eller under trykk inn i lukkede hulrom (f.eks. i vegger. Disse to metodene fører til at materiaiene ferdig utlagt blir forskjellig i pakning, romvekt og dermed også får forskjellige varmemekaniske egenskaper.

Når man skal klarlegge egenskapene til de to forskjellige typene, må det derfor brukes forskjellig type laboratorieutstyr.

Vi bruker innblåsing i en boks (fig. 5) for de materialene som skal inn i lukkede hulrom (f.eks. vegger). Boksen plasseres etterpå i et plateapparat av tidligere omtalte typer for måling. Det er vanskelig å få den samme pakningsgrad av isolasjonen i boksen som den man får i en vegg. Det kan derfor påregnes at de praktiske resultatene vil avvike noe fra laboratoriemålingene. Men når alle materialtyper blir målt på samme måten, vil de bli stilt likt ved sammenligninger.

For utblåsing på horisontale flater har vi en annen metode, fig. 6. Her blir det materialet som skal prøves, blåst på plass med samme utblåsingsutstyr som det man i praksis bruker på en byggeplass. Det blåses ned i kassen K som har en
størrelse på ca.1,2 m x 0,9 m, i den ønskede tykkelsen. Kassen settes inn i et klimarom med stabil temperatur ca. 0 °C. Målingene utføres ved et temperaturfall 25/0 °C fra undersiden til oversiden av isolasjonslaget. Effektmåling foretas med varmeinstrømssåler.

Sikring, styring, regulering

Alle målinger gjøres etter at de tilsiktede forholdene (temperaturer, varmeinstrøm, osv.) har stabilisert seg. Disse faktorene er innbyrdes avhengig av hverandre. De må følges kontinuerlig og effektilførselen må stadig reguleres, helt til den stabile tilstanden er oppnådd.

Et eget EDB-anlegg registrerer de endelige verdiene og beregner -verdier og varmehotstand. Dette reduserer muligheten for menneskelige feil.

Fig. 7 viser utsnitt av prøverommet. Plateapparatene er plassert i hvert sitt av de i alt fire temperaturstyrte kamrene.

Høytemperatur-apparat-rommet er utstyrt med eget avtrekk av hensyn til mulig røyk og gassdannelser ved høye temperaturer.

Varmelaboratoriet er luftkondisjonert med egen frisklufttilførsel.

5. MÅLEUTSTYR FOR KONSTRUKSJONER

NBI disponerer faste innretninger for måling av hele konstruksjonen både på en feltmålestatjon og i laboratoriet. Den faste feltmålestatjonen består av to hus, med størrelse 20 m x 5 m x 5 m og 8 m x 5 m x 3 m. Laboratorierommene har størrelser som varierer fra ca. 5,2 m x 3,3 m x 3,2 m til 6,8 m x 3,3 m x 3,2 m. (Begge deler er nærmere beskrevet nedenfor). De angitte målene på prøvehus og prøverom illustrerer maksimale størrelserne på de konstruksjonene som kan prøves. For måling av sammensatte, større konstruksjoner med kuldebroer, disponeres en "hot-box". Den har en måleflate på 2,45 m x 2,45 m når den brukes som skjermet (guarded) "hot box". Brukt som kalibret "hot box", kan en undersøke konstruksjoner på opp til 3,2 m x 3,8 m.

I prøvehusene kjøres prøver ved det som kan betegnes som "naturlige" temperaturer utendørs og stabil temperatur på ønsket nivå innendørs.

I laboratorierom og "hot-box" kan temperaturen styres på ønsket nivå mellom ca. -33 °C og +70 °C.

I de forskjellige utstyrserhetene kan det måles varmetekniske egenskaper for dører, porter, vinduer, tak-, golv- og veggelementer av alle typer materialer, både for fabrikkfremstilte standardkonstruksjoner og for konstruksjonene slik de utføres på en byggepluss.

Måling i varmeinstrømssåler "hot-box"

"Hot-boxens" utforming fremgår av foto - fig. 8 - og skisse fig. 9.

Den består i prinsippet av tre hoveddeler: Et kaldt rom, et varmt rom og et måleområde. Prøvefelt monteres i en sjåbiong som utgjør et skille mellom kaldrommet og varmtrommet, se fig. 9. I kaldrommet sørger et fryseanlegg for

I praksis vil det imidlertid også være en liten varmestrom gjennom målekammerveggene. Denne varmestrommen registreres ved hjelp av en såkalt termosøyle slik at nødvendige korrigeringer kan gjøres. Slik kan man måle varmeisolasjonssekskapene for et felt svært nøyaktig, selv om feltet har en så komplisert oppbygning at en nøyaktig beregning av verdiene ikke lar seg gjennomføre.

Måling i prøverom

Fotografiet, fig. 10, illustrerer en typisk prøveoppstilling, her i det største prøverommet. Skissen viser prinsippet.

Prøvefeltet deler rommet i to deler. I den varme delen innstilles en konstant temperatur på et eller annet nivå, vanligvis mellom + 20 og + 30 °C, og på den kalde siden, en temperatur på mellom 0 og - 35 °C.

På veggene monteres varmestromsmåler som avleses på instrumenter utenfor rommet.

Nødvendig størrelse på prøveveggen, samt antall varmestromsmåler, er avhengig av veggens oppbygging. Er den enkel og homogen, kan det klare seg med f.eks. et felt på 1,2 m x 1,2 m. Hvis den derimot er komplisert i oppbygningen, med store variasjoner i utforming i høyde- og lengderetning, må man ha større prøvefelt for å få et riktig samlet inntrykk av vegg.

En ganske vanlig prøving i forbindelse med produktutvikling er ellers at veggens bygges opp som en samling av flere interessante varianter som måles samtidig.

Ønsker man en undersøkelse av hvordan fuktigheten på kortere eller lengre sikt influerer på isolasjonen, kan man styre fuktighetsinnholdet i luften på den varme siden til det nivået man ønsker, og ved prøver følge en eventuell fuktakumulering i konstruksjonen.

NS 3161 stammer overens med Dansk Standard DS 1121 og Svensk Standard SS 024212.
Prøvehus på Tyholt, Trondheim

Hus 1

Husets størrelse er: Lengde 20 m, bredde 5 m, høyde 5 m. I tillegg kommer to instrument- og servicerom, samt et påbygg med lengde 6 m, bredde 4 m, høyde 2,5 m.

Fig. 11 viser østsiden av huset med instrument- og servicerom, samt tilbygg på venstre side. Hovedfasadene er orientert mot vest-sydvest og øst-nordøst. Noen flere detaljer er vist på fig. 12.

Huset ligger på et høydedrag ca. 1 km fra laboratoriet ved NBI Trondheimsavdelingen, uten nærliggende bebyggelse mot syd og vest. Nærmeste bebyggelse på vestsiden i ca. 90 m avstand, på sydsiden ca. 200 m. På østsiden ligger et lavt bygg og TV-tårn i avstand ca. 65 m og på nordsiden et større kompleks i avstand ca. 20 m. En skisse av beliggenheten er vist i fig. 13.

Veggene og takets bæresystem er et stålskjellet montert på et fundament som består av en betongramme på pillarer. I tak, vegg og golv kan det monteres prøvematerialer og -konstruksjoner etter behov.

Innvendig kan huset deles opp i mindre rom ved hjelp av skillevegger, og i hvert av disse rommene kan temperatur og fuktighet styres individuelt.

Værpåkjenningene på de forskjellige fasadene er forskjellig pga. lokalklimaet på stedet. vestsiden er utsatt for store påkjenninger fra vind og regn, mens nord- og østsiden har vesentlig mindre påkjenninger. Man kan derfor prøve konstruksjoner under vesentlig forskjellige påkjenninger.

Huset brukes blant annet til å undersøke fukt- og varmetekniske egenskaper for materialer og konstruksjoner under naturlige påkjenninger. Varmestrom gjennom golv, tak og vegger kan måles enten ved hjelp av varmestromsmåleure eller ved effektmåling.

Hus 2

Huset står på samme tomte som Hus 1. Størrelse: Lengde 8 m, bredde 5 m, fri høyde inne 3,0 m, månehøyde opptil ca. 5 m, fig. 11.

Dette huset er montert på hjul som beveger seg på en rund fundamentplate av betong og kan dreies 360°. Hver fasade kan derfor dreies mot hvilken som helst himmelretning.

I hovedveggen kan anordnes to åpninger, ca. 1,2 m x 1,2 m, med kalorimetre bak. Her måles solstråling f.eks. gjennom forskjellige glass-/vindustyper.

Alle vegger er utskiftbare. Varmestrom og temperaturforhold i vegger kan undersøkes for enhver himmelretning og forskjellig solinnsfall. Huset benyttes også til undersøkelser av andre fenomener: vindtrykkmålinger, luftbevegelser inne i konstruksjoner, solavskjerming, lufttetthet osv.
6. FELTMÅLINGER

Nøyaktige feltmålinger er vanskelig å utføre. Det henger sammen med at det er vanskelig å få stabile temperaturforhold både på husets ytterside og romsiden. En del konstruksjoner er særlig vanskelige på grunn av sin oppbygging, f.eks. vegger med luftet ytterkledning og konstruksjoner som er bygd sammen av en rekke forskjellige materialer.

Skal de måles nøyaktig, blir det gjerne tidkrevende og kostbart. Man må mer eller mindre bygge et provisorisk laboratorium omkring den aktuelle konstruksjonen.

Vi bruker imidlertid en del forenklede metoder.

Overflatetemperaturmåler

Det enkleste er å måle overflatetemperaturen med spesielle overflatetermometer. Det vil gi indikasjon på grove feil, f.eks. luftlekkasjer, trekk, utelatt eller dårlig isolasjon. Metoden kan også vise om det kan være fare for kondens av luftfuktighet på overflaten. Det kan benyttes to typer overflate-temperaturmåler, kontakttermometer, og en type som er basert på måling av varmemåling. Den siste har form som en pistol, se fig. 15 og er særlig anvendelig fordi målingen kan gjøres på flere meters avstand slik at det forholdsvis raskt kan måles på mange steder på en konstruksjon.

Varmestrømss måler

Varmestrømss måler kan gi en god indikasjon på varmeisolasjonsegenskapene under visse betingelser. Vi benytter måler med enflate på 300 mm x 300 mm. De monteres f.eks. på innvendig side av en veg i et rom som kan få stå ubenyttet/uforstyrret noen dager mens målingen pågår. Målerne kan festes slik at det ikke oppstår skade på overflaten.

Måles det på sammensatte veggen konstruksjoner (f.eks. bindingsverksvegg), må det oftest brukes flere målerer sammen for å få representativ verdier.

Romtemperatur holdes så stabil som mulig. De utvendige temperaturene må også være mest mulig stabile. For å unngå varierende stråling, bør konstruksjonen ligge i skyggen (f.eks. mot nord eller i ble av andre konstruksjoner). Brå og store variasjoner i lufttemperaturen gir større usikkerhet i måleresultatene.

Varmestrøm og temperatur registreres mer eller mindre kontinuerlig over en måleperiode, hvis lengde i vesentlig grad avhenger av temperaturstabiliteten.

Under gunstige - dvs. stabile - temperaturforhold er målenøyaktigheten god. Man kan ved gunstige forhold regne med en nøyaktighet på ± 5 %, og under vanlige forhold ca. ± 5-10 %.

Termografering

NBI benytter et utstyr (fig. 14) som registrerer usynlig varmemåling og gjør den synlig - som et bilde - på en skjerm. Dette skjermbildet kan avfotograferes f.eks. med et vanlig polaroidkamera.

Bildet kan enten være svart/hvitt eller i farger. Man kan legge inn isotermer (som angir områder med samme temperatur) på bildet. Fargevariasjonene eller gråtonyansene illustrerer temperaturvariasjonene på overflaten av den konstruksjonen som kameraet rettes mot.
Utstyret brukes mest til å lokalisere luftlekkasjer i konstruksjoner, eller til kontroll av isoleringen. Termovisjonskameraet avdekker f.eks.:

- manglende isolasjon
- kuldebroer
- luftlekkasjer
- luftbevegelser inne i en konstruksjon
- nedfuktet eller vått isolasjonsmaterialer

Utstyret benyttes best ved å termografiere fra et byggs innside. Det er en fordel med stor temperaturforskjell mellom ute- og inneluft. Vanligvis er det tilstrekkelig med en forskjell på 15 °C. Skal man bare lokalisere luftlekkasjer, kan det klare seg med ned til 5 °C.

Termografering egner seg ikke til å tallfeste varmetap eller bestemme en konstruksjons U-verdi.

Metoden kan også by på problemer ved bruk mot blanke/reflektierende flater.

7. INTERNASJONAL TILKNYTNING

Måleutstyr, målemetoder, beregningsmetoder og krav varierer en del fra land til land.

I Skandinavia har man en målsetting om at all materialprøving av byggeomateriale skal samordnes slik at de enkelte landene både får felles krav og felles prøvemetoder. En rekke standarder (NS, DS, SS) er allerede likeledende.

Varmetekniske målinger er imidlertid samordnet, dvs. at målinger utført ved NBl ikke behøver overprøving i de andre skandinaviske landene og omvendt. Endelig godkjenning avhenger imidlertid av en del formelle krav og regler om kontroll som varierer fra land til land.

Kalibrering av varmemetringsmåler og plateapparat er samordnet på skandinavisk basis med NBIs standardapparat som kalibreringsmal.

Erfaringer fra bruk av termovisjonsutstyr utveksles regelmessig i fellesskandinaviske sammenkomster.

Det er også innenfor den fellesskandinaviske gruppen NORDTEST utviklet en serie prøvemetoder som er anerkjent av alle nordiske land. For varmetekniske målinger gjelder det blant annet:

- Hot-box method: NT Build 301
- Thermal resistance - hot-box: NT Build 119
- Thermal resistance - heat flow meter: NT Build 131

Det benyttes også metoder utarbeidet av ISO (International Standardization Organisation).
ENGLISH SUMMARY

The laboratory of the Trondheim Division of the Norwegian Building Research Institute has specialized in studies of thermal properties of building materials and constructions.

Measurements are made both in the laboratory, on test houses and on building sites.

Instruments and equipment includes among other things:

Guarded hot plate apparatus and heat flow meters, test specimens 600 mm x 600 mm.

Special hot plate apparatus for high temperatures up to ca. 1000 °C. Test specimen 450 mm Ø.

Guarded hot box, test specimens up to 2,45 m x 2,45 m.

Heat flow meter specially designed for loose-fill materials (granulates), size 1,2 m x 0,9 m.

Temperature controlled test rooms for vertical constructions up to 2,5 m x 6,0 m or horizontal up to 4,0 m x 6,0 m.

Surface temperature measurements both remote and by contact.

Air leakages/airtightness both in field and laboratory.

IR cameras for studies of surface temperatures in laboratory and field.

Guarded hot plate apparatus and heat flow meters are produced for sale.
Fig. 1
Vertikalsnitt av "Guarded hot plate".

Fig. 2
Vertikalsnitt av apparat med varmestromsmåler.

Fig. 3
Apparat for måling av varmestrom i horisontalretning eller i skråstillinger mellom 0° og 90°.
Fig. 4
Vertikalsnitt av höytemperaturapparat

Fig. 5
Granulatmåling, innblåsing i boks av materialer som skal brukes i lukkede hulrom
Fig. 6
Granulatmåling, utblåsing på horisontale flater. Et lag isolasjon blåses ned i kassen, før måling utføres med varmestrømmåler.

Fig. 7
Utsnitt av prøverom. Fire plateapparater er plassert i hvert sitt temperaturutstyrte kammer.
Fig. 8
Varmestrømsapparat (hot-box) for måling av konstruksjoner
Veggfelt
Kaldt rom
Tettelist

Snitt A-A

A

Snitt B-B

2400
3200
3800

ming av varmestrømsapparat (hot-box) for måling av konstruksjoner,
Fig. 10
Typisk prøveoppstilling i det største prøverommet i laboratoriene i Trondheim

Fig. 11
Fig. 12
Samme prøvehus som på fig. 11, med flere detaljer
Fig. 13
Prøvefelt Tyholt M= 1:1000

Fig. 13
Skisse over prøvehusfeltet på Tyholt
Fig. 14
Termograferingsutstyr som registrerer usynlig varmestråling på skjerm

Fig. 15
Utstyr for måling av overflatetemperatur. Måling av varmestråling med "pistolen" kan gjøres på flere meters avstand.